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ABSTRACT

In this thesis, én investigation was performed to
analyze the dynamic stability characteristic of an aircraft
which has sustained damage to a primary control surface. The
analysis was performed using the existing functiocnal form of
actual wind tunnel data taken on % F-16 model. Two control
schemes are used for trimming an F-16 that has sustained
damaged to its rudder. The First control scheme represent
the basic aircraft, while the second allowed the Horizontal
Tail Ailerons to move independently from the Fiaperons.

The investigation was conducted for one flight

conditiQn

representative of the aircraft at cruise speed.
i # co * o, - . ,

Region in a/B space Qhere trim can‘bé‘aéhieved was selected
as input into a linearized aircraft model. This model took
into account the failed control surface. The:gigenvalues of
the open and Flpsed lqop models were analyzed to determine
the region in. a/g séace where the aircraft was dynamically
stable. 'The migration of the eigenvalues for several trim
conditions was also investigated to gain some insight on the
aircraft behavior while Iin an unsymmetrical orientation.

For this study, cthe open loop eigenvalues for the trim

area investigated gave a stable system. When the aircraft

controller was added into the system, regions of dynamic

instability appeared. For Rudder Failure less than -20

ix




degrees, trim could be achieved but the aircraft was

dynamically unstable. -




DYNAMIC ANALYSIS OF COMBAT AIRCRAFY
WITH CONTROL SURPACE FAILURE

I. INTRODUCTION

In modern high performa =3¢ aircraft, Flight Control
Systems (FCS) are critical in achieving the performance
levels and operational utility required. Also, new designs
which increase the performance make the aircraft more
dependent on the FCS for stabilization. If a control surface
is damaged or not operational, the control laws designed for
the healthy aircraft cease to be valid since any signal
going to the damaged control surface will be ignored.
Studies showed that the FCS contributed up to 20% of the
aircraft losses in combat [1:1]. The principal reasons were
the physical damage, the loss of function, or seriously
degraded flying qualities.

In recent years, several methods have been examined to
address the problem of damaged or failed control surfaces.
The development of techniques, like restructuring the FCS,
to restore control may have major implications in aircraft
flight safety , sortie generation in a combat environment,
in reliability and maintainability, and in saving the
pilot’s life and the aircraft. Before considering applying

any of these techniques, we must understand the dynamics of
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the aircraft and evaluate whether stabilization is possible.

Problem Definition

If a control surface is damaged or inoperable, several
negative effects will be encountered. First, any input going
to the damaged control surface will be ignored. The FCS will
have to rely on the other surfaces to control the aircraft
attitude. Second, the coupling effect between the
longitudinal and lateral) modes of the aircraft may not be
regligible. For example, if the rudder fails and is locked
into a position other then zero, the aircraft is likely to
experience unwanted lateral force as well as yaw.
The questions that arise when a control surface becomes
inoperable are: could we maintain the aircraft in an
equilibrium or trimmed state, and is the aircraft
dynamically stable? Depending on the flight condition, many
newer types of combat aircraft have to rely on the FCS to
provide dynamic stability even in a trimmed state.

This research will deal with the latter question and
will attempt to provide a better understanding of the

problem and the means available to address it.

Previous Work

Eslinger [2] investigated a failure of the AFTI/F-16

right horizontal tail with all other surfaces operational.
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The failed surface was left free floating. His model
utilized constant aerodynamic derivatives at the selected
flight conditions. In order to restructure the control laws
for both the healthy and damaged aircraft, he used the
multivariable design technique developed by Professor
Porter. As he noted [1], the left horizontal tail assumes
primary pitch control while the other surfaces deflect to
counter the rolling and yawing moments produced by the left
horizontal tail deflection. Weiss et al, [3], developed and
solved an automatic trim problem for restructurable aircraft
control. In their paper, the failure is treated as a
disturbance from desired steady-state outputs. Using the
observable part of those disturbances that exist after a
control surface failure, they feed forward a control
solution which is a function of the desired steady-state
output and the observed disturbance. They also noted
[3:405], that the most challenging single element failure is
a stuck rudder since it is used extensively for damping the
dutch roll mode, and little side force can be produced by
the other control surfaces.

Thural, [4], conducted wind tunnel experiment to
investigate the effect of various types of control surface
failures on the aircraft stability derivatives. He conducted
his test on a one-twentieth scale model F-16 in the AFIT
five foot wind tunnel. He collected data for three different

configurations, where each represented a potential failure
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type. The data was collected by varying each control surface
individually for a aiven angle of attack (a) and sideslip

angle (B8). Therefore, the data includes information about
the coupling of the static aerodynamic stability
derivatives. His experimental setup did not permit him to
collect data for dynamic stability derivatives.

In 1989, Zaiser, [5], reduced the data collected by
Thural for one particular failure. He employed a least
square curve fitting technique to develop polynomial
functions which describe the aircraft static stability
derivatives. After deriving the equilibrium equations for
rectilinear flight in terms of the static stability
derivatives, he analyzed the impact of an actuator failure
of the rudder for the F-16 aircraft. He also investigated
different control implementations which allowed for greater
independence of movement among the undamaged control
surfaces. Region in the a/B space where equilibrium was
achievable were investigated at two different flight
conditions.

At the conclusion of his thesis, Zaiser made several
recommendations for follow-on work, [5:66]. He stated that a
dynamic analysis should be performed to evaluate how the
aircraft would respond if trimmed in an unsymmetrical

orientation.



Purpose

This research will investigate the dynamic stability
characteristic of an F-16 aircraft that has sustained damage
to its rudder actuator. Static aerodynamic coupling that
results from unsymmetrical trim orientation will be included
in deriving a linear state-space model of the aircraft. For
a given flight condition, several trimmed conditions will be
investigated for dynamic stability. The impact of the
failure will also be investigated for the current aircraft

control laws.

Approach

To accomplish the stated purposes of this research,
specific tasks are accomplished and presented in the
different sections of this thesis. The force and moment
coefficients that Capt Zaiser reduced into functional form
are used in conjunction with the equilibrium equations to
find a trim condition for a specific control implementation.
The static stability derivatives are linearized for each
static equilibrium condition and included in the aircraft
plant model.

The linearized equations of motion are derived and
analyzed to relate the impact that the different stability
derivatives have on the model., As Weiss pointed out,

[5:405], the actuator failure of the rudder is assumed to be

the most significant single primary control failure. This is
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taken into account, and the actual control laws of the F-16

aircraft are modified.

Presentation

The analysis performed in this thesis is presented in
the following chapters. Chapter II gives an overview of how
the equilibrium regions are obtained for the different
control implementations assumed. The derivation of the
linearized equations of motion and the formulation of the
F-16 plant will be included in Chapter III. Chapter IV will
look at the dynamic stability of the aircraft for the
different trimmed conditions. The results of this analysis
are presented and discussed in Chapter V and Chapter VI
contains a summary of the results of this research and

recommendaticns for further study.




II. TRIN DETERMINATION

Introduction

The analysis performed in this thesis i= based on data
obtained by Zaiser, [S], in his Master’'s thesis in 1989. In
this chapter, a short description of the F-16 is given along
with a discussion of the results obtained by Zaiser. More
specific trim conditions are also evaluated using techniques

similar to those employed by Zaiser.

Aircraft Description

The F-16 is a single engine, low aspect ratio fighter
aircraft currently in service with several countries. Seven
control surfaces are employed on the aircraft. All seven
control surfaces are of interest in this research. The
location of each control surface can be found by referring
to Appendix A.

The primary function of the Leading Edge Flaps (LEFs)
is to vary the camber of the wing as the angle of attack (a)
increases. This causes C;,.. to occur at higher a, thus
providing more lift. They are designed to deflect
symmetrically and their deflection is scheduled as a
function of a and Mach number. Therefore, the pilot has no
direct control authority on their deflection.

The Flaperons (FLs) are used to provide both lift and
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rolling moment. Below a specific dynamic pressure (q), the
FLs act as flaps to provide 1lift. Otherwise, they act as
ailerons which are controlled by the pilot to provide
rolling moment.

The Horizontal Tails (HTs) are employed as elevators to
provide a pitching moment commanded by the pilot. The HTs
also deflect asymmetrically to augment the rolling moment,
and their deflection is scheduled as a function of altitude,
q, and Flaperons input.

The Rudder is the primary control surface for yawing
the aircraft. On the F-16, the rudder is the dominant
surface for generating side forces.

Table 2-1 F-16 Reference Data

Gross Weight gw 21018 ]bf

Wing Area S 300 Ft

Span b 29 Ft

MAC ¢ 10.94 Ft

Center of Gravity Cyg @.35 MAC
Moment of inertia in Body axis

X Moment I 10033.43 Slug Ft?

Y Moment IYy 53876.27 Slug th

Z Moment I,, 61278.45 Slug FtJ

X-Z Moment I, 282.13  Slug Ft

Control Surface Deflection Limits

LEF -29 s 5 s 25°

FL -20% s 5 s 20°

HT -259 s 5§ s 25°

Rudder -30° s & s 30°
2-2




The sign convention adopted in this thesis is shown in
Figure A-2 of Appendix A. Basic aircraft data is presented

in Thural thesis {4:127], and is summarized in Table 2-1.

Aerodynamic Coefficients

The data collected by Thural, [4], is presented as
nondimensional force and moment coefficients for a given «
and B. EBach coefficient can be transformed into a force or

moment using

(2-1)

where Fg and Mo represent the appropriate force or moment
acting on the aircraft in the stability axis system. Figure
A-2 gives a graphical representation of each axis systenm.
For a rigorous definition, refer to Etkin work [7:1106-112}.
Since the data was taken at finite discrete points, it was
transformed in functional form for analytical purpose. Using
a Least Square curve fitting technique, Zaiser determined
the contribution of each force and moment on the aircraft
and its control surfaces as a function of a and g8, [5:10-
16). The functional form of each force or moment coefficient
are represented by equation 2-2 where the first term
represents the contribution of the basic aircraft with no

control surface deflections, and the second term represents

2-3




7

J I M N
CP=EEA11 ot Bj";EEBJm a” B 5, (2-2)

J=0 1=0 m=0Q n=Q

the contribution of each control surface. The functional
form of each aircraft static stability derivative is
presented in Appendix B and an example is shown in

Pigure 2-1.
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BEquilibrium State

The desired trim conditions that are investigated in
this research have the aircraft flying a rectilinear
trajectory at constant altitude. When the aircraft is in
equilibrium, all external forces and moments acting on it

equal zero. Therefore the equilibrium equations become

Fy + Fr - mg 8in@ = 0 (2-3)
F, + mg cosb sin¢ = 0 (2-4)
Fy, + mg cosg sin¢ = 0 (2-5)
M, =0 | (2-6)
M, =0 (2-7)
M, =0 (2-8)

where FAi' FTX' and "Ai represent the aerodynamic forces, the
thrust force, and the aerodynamic moments in the i axis of

the bhody axis reference system. 8 and & are the Euler angles

that define the aircraft attitude with respect to earth
inertial reference frame. The only other equation required
in the trim analysis is an expression that defines the

aircraft pitch angle for a constant altitude flight, which

is
= Tan™ TanB o; (2-9)
0 = Tan ( Tane Cosd + “o5a S1n¢)
2-5




Since no restriction was placed on a wing level flight,
coupling effects between the longitudinal and lateral modes
are apparent in equations 2-4, 2-5 and 2-9. A complete
derivation of the equilibrium equations can be found in
[5:85-99].

Before solving the trim equations for a specific rudder
failure, flight conditions need to be established. Table 2-2
gives the flight condition that is investigated in this

research.

Table 2-2 Flight Condition

Mach Q.6
Altitude 15000 Ft
Velocity 375 KEAS
q 300 psft

Problem Formulation

The desired equilibrium is a rectilinear flight at
constant altitude. Although equilibrium states might be less
difficult to achieve at other flight conditions, only
rectilinear flight will be investigated. A failure of the
rudder, which results in the rudder being locked into a
specific deflection is the only failure mode that this
thesis will study. The investigation will also be limited by

the range of the test data that was collected by Thural [4].

Therefore the dimensions of the a/g space that will be
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investigated are limited to -6.0° s 8 s 6.0° and @° s « =
20.0°.

Some assumptions s8till need to be stated before
proceeding with the analysis. They are:

1. The aircraft is assumed to be a rigid frame.

2. The earth surface is assumed to be an inertial frame

of reference.

3. The aircraft mass and mass distribution are assumed

to be constant.

4. The X-Z plane of the aircraft is assumed to be a

plane of symmetry.

These assumptions hold for both the equilibrium equations
and the linearized equations of motion developed in
Appendix D.

As discussed in the beginning of this chapter, the only
control authority that the pilot has on a healthy aircraft
is through the Horizontal Tail Elevator (HTE), the Rudder,
and the Flaperons (FLs). The Horizontal Tail Ailerons (HTASs)
deflection is proportional to the FLs deflection. For the
flight conditions of Table 2-2, the HTAs deflect only a
factor of 0.294 of the FLs [8].

The control schemes investigated in this thesis are
derived by allowing successively greater independence. One
point to note is that the control scheme discussed in this
chapter does not refer to the control laws. The two control

schemes investigated are shown in Table 2-3.
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Table 2-3 Control schemes

Case A Case B

SFL SFL

SHTE SHTE
Suta

Case A represents the basic aircraft. Case B allows the
HTA to deflect independently from the FLs. It is assumed
that an algorithm is present to trim the aircraft using
these control surfaces without modifying the actual control
laws. Also, the deflections of the individual control

surfaces in both cases are related as follows:

8 = % (8zrr, - 8ppp) (2-10)
Surz = 2 (8pmr + 8r) (2-11)
8ima = 3 (Begr -~ 8u) (2-12)
8,0 = % (8p0n + 8.0s) (2-13)

Before solving the trim problem, the external forces
and moments acting on the aircraft still need to be

determined. By specifying a, B, and the dynamic pressure q,
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the external forces and moments are evaluated using the

polynomial listed in appendix B as a function of a specific

control surface deflection. The total external force or

mon :nt acting on the aircraft can be written as

L 1 1
Fi=2,+B+Y Y Y Cpe*p"8, (2-14)
n=0

=1 m=0

where F; 1s the total force or moment acting on the
aircraft, AG is the contribution of the aircraft with all
the control set to zero, B is the contribution of the failed
rudder and the LEFs, and the last term is the force or
moment that results from the unknown deflection of the
control surfaces. The unknowns th-~. tewain to be evaluated

are the deflection of the control surface.

Solving the trim problem

Assuming that the power available from the
alrcralt can compensate for the aerodynamic forces and the
gravitational term in equation 2-3, the problem can be

formulated as follows

I
- (A, + B, + mg Cos® Sin¢) = C,. 8 (2-15)
P4 Z ’ Z1 I

I
- (A, + B,) = ; Cu 8, (2-16)
-]
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I
- (A, + B) = C,, O (2-17)
L L g Li Y41
I
- (Ay + B,) = Cy 8 (2-18)
N N E N1 1

Since the components on the left mide of each equation are

known, the problem can be reformulated as

b=[A]6 (2-19)

where the vector b represents the known forces and moments,
the A matrix contains the contrcl derivatives, and 6§ is the
unknown control deflection vector. Using equations 2-4, 2-9,
and 2-15 to 2-18, the trim problem can be solved. For Case
A, the I in equations 2-15 through 2-18 is two, since only
the FLs and the HTE are directly controlled by the pilot. In
case B, I equals three since the HTAs are assumed to be
independent from the FLs.

Equation 2-4 and 2-9 are used first to estimate ¢ and
. For both cases, equation 2-19 represents an
overdetermined system of equations that can be solved using
Singular Value Decompositions (SVD) [9:59].

In his thesis, Zalser wrote a computer code to solve
for the trim conditions, where the A matrix in equatjion 2-19

was square [5:112]. The same code is modified and used to

evaluate the trim conditions for each case at a given rudder
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failure. Zaiser program was modified by the inclusion of a
least square algorithm in the SVD routine. Since a least
square solution can be obtained for any given set of initial
conditions, a range of values that would be considered zero
had to be established. Table 2-4 gives the limits that are

incorporated into the code.

Table 2-4 Porces and Moments

Limits
| F ool < 50.0 1bf
IrAyl < 50.0 1bf
| Mp! < 500.0 1lbf Ft
| Mpyl < 500.0 1bf Ft
| Mp,l < 500.2 1lbf Ft

Results from the Trim Analysis

The results from the trim analysis are presented in
Figures 2-2 to 2-7. The area where equilibrium is possible
is presented on the first graphic of each figure for a given
case and rudder failure. The roll angle and the control
surface deflections where the aircraft is in equilibrium are
also presented. For each of the cases and rudder failures,
if B is specified, only a very small variation in a is

permitted for the aircraft to remain in equilibrium.
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For a zero degree rudder failure, both cases show some
asymmetry. This results from the limits of Table 2-4 that
needed to be included in the code to calculate the trim
area. For a rudder failure other than zero degrees, a
vertical line is included in each graphic at g=-6° since the
functional representation of the stability derivative is
only valid for -6° < B8 < 6° and @° < a < 20° [5:30). Data
points to the left of that line are not analyzed, since for
B < -6°, the results are obtained by extrapolating the
functional form of the stability derivatives.

One of the interesting features displayed in the
results is the attitude of the aircraft for a specific
condition. For a 25° rudder failure, case B, it might be
preferable to trim the aircraft at g=-6°, a=1.8° and #=-18°
since this is the trim condition that gives the most control
authority to each control surface. This will be taken into
consideration in the following chapters.

Summary

In this chapter, different rudder failure are presented
for a given control scheme and flight condition. The
alrcraft controls are also presented with their limitations.
Assumptions are made regarding the control scheme
implementation for both cases. Data required to analyze the
alrcraft dynamic response for a specific failure conditions

is presented.
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III. AIRCRAFT PLANT MODEL

Introduction

In this chapter, the linearized F-16 plant model is
derived using the functional representation of the static
stability derivatives of Appendix B for several trim
conditions. The eigenvalues of the open loop plant are
analyzed to determine the dynamic characteristics of the

aircraft for a specific rudder failure.

Linearized equations of motion

The mather * .cal model is presented in Appendix D. The
sign conven.i .a for the axes and control deflections are
shown ir Figure A-2 of Appendix A. The simplifying
assurptions made during the derivation of the equations of

mction are:

Assumption 1. The aircraft is assumed to be a rigid
body.
Assumption 2. The earth surface is assumed to be an

inertial reference frame.
Assumption 3. The mass and mass distribution of the
aircraft is assumed constant.
Assumption 4. Disturbances from steady flight
conditions are small, implying a small

angle approximation. Higher order terms

3-1
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of the disturbance quantities are
negligible.

Assumption S. The flow surrounding the aircraft is
assumed quasi-steady.

Assumption 6. Variation of the atmosphere, including
density and speed of sound, are
negligible for small altitude
perturbations.

Even if these assumptions are made, the equations still
include coupling effects. The complexity can be reduced by
linearizing the equations of motion about a steady state
flight. For this investigation, the only restriction is for
the aircraft to fly a rectilinear trajectory at constant
altitude which implies:

1. Initial side velocity may exist: Vo

2. Initial bank angle may exist : &,

3. Initial pitch angle exists : 6,

4. No initial angular velocities exist which results in

Pp=0,=Ry=¥=0=¢=0 (3-1)

Equation 3-1 considerably simplifies the linearized
equations of motion shown in Appendix D, but they still
include coupling effects produced by the roll angle and the
side velocity. In this research, the effects of unsteady
atmospheric disturbances were neglected.

3-2
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Aerodynamic Forces and Moments

Assuming that the aircraft has enough thrust so that
steady state flight can be maintained, the thrust setting
will balance the remaining forces in the corresponding axis.
Also, the direct thrust contributions to the stability
derivatives is generally negligible for conventional
aircraft and is assumed to be zero for this aircraft
[6:267]. The only part of the linearized equations of motion
that still need development are the aerodynamic forces and
moments

The representation of the aerodynamic forces and
moments is usually made in the stability axis system. Since
the perturbed equations of motion are written in the body
axis system, the aerodynamic forces and moments need to be
transformed into that axis system. Each stability axis can
be transformed into the body axis system using the stability
to body axis transformation matrix ([BS)]) presented in
Appendix D. Once the transformation is made, the aerodynamic
forces and moments are given in the same axis system as the
equations of motion.

Each of the forces and moments need to be expanded to
determine their dependence on the perturbed motion. The
expansion is done using a Taylor series expansion at a given
trim condition, denoted by the subscript ()0. The expansion

of the forces and moments can be represented as
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where the variable A represent the perturbed velocities and
accelerations, and A the perturbation from the ()0
condition. The higher order terms have been eliminated from
the expansion in accordance with assumption 4. The results
of this expansion is shown in Appendix D. The analysis of
the aircraft motion is performed at different trim
conditions where the aircraft attitude preclucde the
separation of the longitudinal and lateral mode. Therefore,
all cross-coupling derivatives are included in the perturbed

equations of motion.

State Space Form

In order to analyze the system, the perturbed equations
of motion are put into matrix form. This form is used to
determined the dynamic stability and control for various
rudder failure and trim conditions. The matrix form of the

perturbed equations of motion may be written as:

X=AX+Bu (3-4)




where x represent the aircraft states, A the plant matrix, u
the control variables, and B the matrix of coeffi:ients
associated with the control. To determine the stability of
the system, the eigenvalues of the plant matrix are computed
using a control analysis program (Pro-Matlab [10])). If an
eigenvalue has a positive real part, then this state is
unstable. Dyn. wvic stability still might be recovered with
the controller. This aspect will be discussed in the next
chapter. Each of the eigenvalues are also presented
graphically to gain some insight on the plant behavior. It
is also possible to analyze the controllability of the
system. Equation 3-5 is one method to determine the

controllability of the system. In this equation, A is the

M, =[B:AB: A*B: ... i A"'B] (3-5)

plant matrix, B the control matrix, M. the controllability
matrix, and n the number of states. If M. is full rank,
rank(Mc) = n, then that particular trim condition is
completely controllable with the available inputs using
state feedback. If the system is completely controllable

then it is possible to reach any state [11:2-42].

Results
In order to facilitate the data handling, a computer
code was written to determine the plant matrix, A, and the
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control matrix, B, for different trim conditions.
computer code is presented in Appendix E.
stability derivatives of Appendix B are linearized and
included into the code. For specific a and 8 the static
stability derivatives are evaluated and included in the
linearized equations of motion.

Table 3-1 Static stability

Table 3-1 lists the static

The static

Derivatives
Drag CD, Cc ’ CD
Lift . co, ¢P® 7 DA
, L La LB
Pitch : Cm, cma , C
;]
Roll H Cl"' Cla ’ ClB
Yaw 1 Cn, Cna ’ cnﬂ

stability derivatives that are linearized. The remaining
stability derivatives were taken from data collected by the
Flight Dynamics Laboratory for the AFTIF-16 flying at Mach
©.6 for three different altitudes (@,
Since the altitude of interest in this research is 15000
feet, the stability derivatives were estimated using a
second order polynomial fit of the three data point
available. Table 3-2 list the value of the derivatives that
are included in the computer code.

Since no data on the dynamic cross-coupling derivatives

were available for the F-16,

This is a reasonable assumption,

contribution to aircraft motion is relatively small

according to Orlik-Rukemann,

3-6
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they were assumed to be zero.

since for low a their
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For each of the cases




Table 3-2 control derivatives

Q0059

0.0
©.080111
©.53755

CL

0.00002
-0.99333
2.3989

€
0.0

-0.23708
0.025172

Cnm

-0.0000638
-0.77776
-2.6761

cn

0.0
-0.0079264
-0.48192

and rudder failures, the eigenvalues are represented
graphically in Figures 3-1 to 3-8. The vertical line at
x=0.0 on most figures is a reference line. The eigenvalues
for case A do not change much over the trim area for both
rudder failures (less than are 2%) therefore an average
value of each of them is considered appropriate. They are
presented in Table 3-3.

Table 3-3 Eigenvalues for Case A

@ Degree rudder failure -10 Degree Rudder Failure

3.16 s a = 3.19 .88 s a s @.95

.05 s g s 0.10 -3.28 s B s -3.22

.19 = & = 0.42 -7.75 s & s -7.48
-0.0023 t 0.06761 Phugoid -0.0022 * 0.0682i1
-9.7275 t 4.63011i Short Period -0.6499 * 4.67731
-.3624 t 4.08051i1 Dutch Roll -0.4097 ¢t 3.8549i

-1.4703 Roll -1.5711

-0.0309 Spiral -2.0199
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The legend that describes each figure is in Table

3-4
Table 3-4 Legend for Figures 3-1 to 3-8
a: Dutch Roll
b: Short Period
C: Roll
d: Phugoid & Spiral
RUDDER FAILURES DEGREES
%] -10 -20 -25
By 0.0° 0.0° -4.4° -5.0°
B -3.3° -6.0° -6.0° -6.0°

The functional form of the static stability derivatives was
derived from data, where -6.0° < B8 < 6.0° and @.0° < a <
20.0°. Therefore the curve fitting used for points outside
the B limits may show odd behavior. This is the reason why
the eigenvalues have a strong departure for g8 < -6.2° and
for rudder failures greater than -10°. One other interesting
point is the dynamic stability of the open loop system.
Since all the real parts of the eigenvalues are negative,
the open loop plant is dynamically stable. Equation 3-5 was
used to look at the controllability of the system. Boundary
points as well as some intermediate points were evaluated
for controllability. All the points that were checked
vyielded a controllable system. This means that with an

3-8
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appropriate controller, it is possible to position the
eigenvalues of the system to guarantee dynamically
stability. Now the question that needs to be answered is:
Does the present controller on the aircraft still adequate
considering the damaged rudder? The next chapter will

provide a means to answer this question.

Summary In this chapter, all the equations needed to
analyze the dynamic stability of the open loop F-16 aircraft
having sustained a rudder failure were derived and put into
matrix form to facilitate the analysis. The results showed
that the aircraft remains dynamically stable, but with
lightly damped phugoid, short period and dutch roll modes. A

rigorous analysis of the results is done in Chapter V.




IV, STATE SPACE MODEL DEVELOPMENT

Introduction

In order to investigate if the F-16 control systenm
augments the aircraft dynamic stability for given trim
conditions and specific rudder failures, a state space model
of the alrcraft flight control system was created. The
aircraft plant derived in Chapter III is for different trim
conditions, but at a specific speed and altitude. To be
rigorous, a state space model would have to be developed for
each trim condition, since the model is dependent on the
trim velocity of the aircraft and a« trim. For the range of
trim conditions analyzed, the same control system model is

used throughout the analysis.

Plant Matrix Development

In order to construct a state space representation of
the F-16 control system, a flight condition must be
selected. The control law diagram presented in the F-16
Software Mechanization Document [8] is linearized about the
flight condition presented in Table 2-2. No pilot input are
used, so all paths associated with pilots inputs can be
ignored. Since the horizontal tail is used to command both

pitch and roll rates, an effective flaperon deflection input

4-1




was determined [8]. The effective flaperon deflection is

8pere = 8, + .2948,; (4-1)

where:

8,,;r = Effective Flaperon Deflection (°)
8, = FlaperonDeflection (°)

8,r = Horizontal Tail Deflection (°)

This effective flaperon deflection was incorporated into the
computer code to calculate the B matrix for both cases at
the given trim conditions. The effective flaperon deflection
is on! - used for the roll rate commands. Another
modification is also made to the control law diagram. The
load factor command is change to pitch rate command. The
gain in the command path of the control law diagram has to
be adjusted in order to convert load factor to a pitch rate
command. This is done using the steady Z axis acceleration
as shown in equation 4-2.

A = q Vo (4-2)
n (57.3) (32.2)

where:

A, = normal acceleration at pilot station (g)

g = pitch rate (°/s)
V, = steady state forward velocity (ft/s)




Figures 4-1 and 4-2 show the final configuration of the
linearized control law for both the longitudinal and lateral
axis. Since the aircraft has a failed rudder, the lateral
axls still needs to be altered to represent it. This is done
by removing all feedback paths that are input into the
rudder. The final configuration of the linearized control
law for the lateral directional axis is shown in Figure 4-3.
The state vector used to represent the aircraft is

shown in equation 4-3.

X=[uaeBpgré¢b¢) (4-3)

Since the commanded input is pitch rate instead of load
factor, the outputs of the system available for feedback are

a, q, and A,. A_1is in units of g’'s. The expression for the

n

normal load factor at the pilot station is

a, = a;_ - X, Q

w-qV, - X4

(4-4)

which can be transformed using small angle approximation

into

An=[-Vo(&—q)+X.q][321.2 (4-5)

where X, is the distance from the aircraft cg to the

accelerometer located under the pilot’s seat. For the F-16,

4-3



~—pmON—g

Figure 4-1 Modifled P-16 Longitudinal Control System
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X, 18 14.0 feet. The next step is to build the measurement
matrices, C and D, associated with the plant. Referring to
figure 4-1, 4-3, and equation 4-5, the measurement matrices

become:

0100 0 0000
,1.l0001 00000
(¥1=lo 000 1 000 ofl%]
- — - —m AL = = = -
i (4-6)
0 0
00
+ 0 O [ai]
where Anl and An2 are
_Vo . X. ]
= +
A (32.2)a(2'1) (32.2]a<5'1)
i [0000100Q 0] (4-7)
32.2
- -Vo 0 X. »
Anz '(32.2)b(2’7) +(32.2)1’(5"7)
with i =1, 2, 3, ..., 9, J= 1, 2, and a(2,1i), a(5,1),

b(2,3), b(5,j) representing the second and fifth row of
elements of the A and B matrix developed in Chapter III.

Therefore the final open loop system can be represented by

X=AX+BU (¢4-8a)



x=Cx+Du (4-8b)

In order to prevent implicit algebraic equations while
deriving the closed loop system, the state vector, X, can be
redefined by including the control deflection into the state
and the actuator model into the input. This will then lead

to
X =4 x +8 U (4-8¢c)

2’ = C’x’l (“80)

where the D matrix is part of C’.

Controller Development
The feedback and feedforward paths shown in Figure 4-1

and 4-3 can be expressed as a matrix in the Laplace domain

in terms of the aircraft inputs and outputs as

[ 1.056 (8+5) (3s+11.25) 0 17
s(s+411.25) A
n
4.2
[6"]: (5+10) 01
0.353(g+5) (35+11.25) | q (4-9)
(s+1) (s+11.25)

+ s
0 -0.12| [Pewt
4-8
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The transformation of the matrix from the Laplace
domain to the time domain can be done by transforming each
Laplacian element into a state space phase variable
canonical form [13:210-215]. The transformation in this case
was done using the command called tfm2ss of the control
analysis computer program called Pro-Matlab, [10]. A minimum
realization was also performed on the matrix to remove
unnecessary states. The feedforward (subscript E) and
feedback (subscript K) in the time domain are shown in

equation 4-10a to 4-11b respectively.

X, =Ayx, +*Bgd (4-10a)
Y, =CpX,+Dgd __, =1 (4-10b)
X, =ArX,* By X (4-11a)
X, = Ckx,r-wD,tx=u1 (4-11b)

where
-a-a.d=[qmdpand ]T (4-12a)

and
u=u +u (4-12b)
4-9




Closed Loop System Derivation

The F-16 utilizes negative input and positive feedback
in its control law diagram, as shown in Pigures 4-1 and 4-2.
This is due to the sign convention which defines a positive
deflection of the effective flaperon or the horizontal tail
as being trailing edge down. Since the computer program used
to get the closed loop state space representation uses
negative feedback, the sBign of the C and D matrix need to
be changed. The block representation of the total system is
shown inAFigure 4-4. Using Eq (4-1Qa) through (4-12b), 1t is
now possible to derive the closed loop model of the
ailrcratft.

Substituting equation 4-8d into 4-11a and 4-11b gives

X, =Ac X, +B, CXx (¢-13a)
u =Ce+ D CX (4-13b)

Placing equation 4-12b into 4-8c and substituting 4-13a and

4-13b will lead to

= (A +B D) x+B Coxy+B Dygdyy (4-14)
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Figure 4-4 Close Loop State Space System




Combining equation 4-10a, 4-14, 4-8d, and 4-13a into matrix

form yields

X, Ag 0 o X,

X |=|B Cy A+B D, C B C|| ¥

X, 0 B C’ Ay X,
By (4-15)

+ Bng [a]ad
0

xl
y=[0 ¢ o] ¥ (4-16)

xK

Using Equation 4-15 and 4-16 it is now possible to
determine the characteristics of the closed loop system.
Appendix F shows an example of one open loop and closed loop

systems for one trim condition of case B.

Summary

In this chapter the closed loop system was derived
using a modified controller that takes into account the
failed rudder. The eigenvalues can then be calculated for
each case and failure. The open loop and closed loop
eigenvalues can be compared to determine the effectiveness
of the controller. Analysis of the results is performed in

the following chapter.




V. DISCUSSION OF RESULTS

Introduction

In the previous chapter, the closed loop plant for the
F-16 aircraft was derived considering a damaged rudder. The
model is used to determine, for each rudder failure and trim
condition, the closed loop eigenvalues of the system. A
physical explanation is given on the behavior of the system

and its implication on the aircraft dynamic stability.

Eigenvalues of the Closed Loop System

Using the controller developed in the previous chapter,
the eigenvalues for each rudder failure and trim condition
are calculated. Since the linearization of the equations of
motion presented in Appendix D includes cross coupling
derivatives and asymmetric trim condition, the results
obtained from the closed loop system are dependent on the
angle of attack (a), the sideslip angle (B8), and the bank
angle (#). Table 3-4 in Chapter III also describe Figures

5-1 to 5-8.

Longitudinal Motion

For case A, the closed loop eigenvalues for a rudder
failure of @ and -10@ degrees are presented in Figures 5-1

and 5-2. The controller in this case does not significantly
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change the location of the eigenvalues close to the
imaginary axis.

If the rudder fails at zero degrees for Case B, Figures
5-3 and 5-4 show the migration of the eigenvalues from B,= ©
degrees, $,= © degrees, aj= 3.17 degrees to Bo= -3.3
degrees, ®,= -5 degrees, a,= .8 degrees. The phugoid complex
conjugate eigenvalues remain very close to the origin (d),
for both the open and closed loop system, since they depend
primarily on aircraft velocity, which does not vary
significantly. At various B, the closed loop phugoids become
unstable with a natural frequency around .06
radians/second. This instability can easily be compensated
by pilot. This is also true for rudder failure less than @
degrees as seen in Figures 5-5 to 5-8.

The short period oscillations (b) in the open loop case
presented in Figure 3-2 are lightly damped. By introducing
the controller, their damping decrease where they become
unstable for values of B between -2.17 and -1.28 degrees as
shown on Figures 5-3 and 5-4. For rudder failure of -19@
degrees the instability occurs for values of B between -2.66
and -0.7 degrees. As the aircraft moves away from a wings
level trim condition, a decreases and the bank angle becomes
less than zero degrees, which means the stability
derivatives related to a are affected. Since the model uses
fixed dynamic stability derivatives, the natural frequency

will tend to decrease and the damping will eventually
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increase (for B less than -2.17 degrees for a @ degrees
rudder failure) as the absolute value of the stability
derivatives related to a decrease [6:309]. For a rudder
failure of less than -20 degrees, the short period roots are
pairing with the controller roots, and two distinct motions
appear as shown on Figures 5-7 and 5-8. The sideslip angle
(B) at which those motions occur is less than -7 degrees,

which is outside the boundary defined earlier.

Lateral Motion

In Figure 4-3, the controller has lost the ability to
feedback any signal to the rudder. This effect is seen in
the dutch roll behavior in Figures 5-1 to 5-8. Compared to
the open loop case, the controller basically decreases the
dutch roll damping since it has lost the ability to feedback
either roll rate or side acceleration to the rudder. Since
feeding back the roll rate, in this case, decreased the time
constant of the spiral, this also had the effect of 1
decreasing the dutch roll damping. As B8 moves away from a (
zero degrees value, the real part of the dutch roll tends to
stay stationary while the magnitude of the imaginary part
increases. As B becomes smaller, the dutch roll natural
frequency increases and its damping decreases.
The spiral root for the closed loop case couples with a

controller root to create a pair of complex conjugate roots

near the origin. As B decreases, the roots move away from
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the origin and create a lateral short period oscillation
before returning to the real axis. For rudder failures less
than -10 degrees, the complex conjugate roots break on the
real axis where they become real as seen on Figure 5-5.

The roll also couples with one of the controller roots.
The effect encountered from that coupling is only apparent
for rudder failure less than -10 degrees as seen on Figure
5-5. A complex conjugate root is formed, moving away from
the origin, which produces a lateral short period
oscillation. As B decreases, the roots break into the real
axis for B less than -3.7 degrees.

For a rudder failure less than -20 degrees, the real
roots located on the real axis couple to form a short period
lateral oscillation.

For case A, closed loop system instability occurs for
various values of B. This instability is generated by the
phugoid root. This is not critical since the natural
frequency of the phugoid (around .06 radians/second) is such

that the pilot can easily compensate for it.

Discussion of Results

Even if the aircraft can be trimmed for specific rudder
failure, the present controller modeled in Chapter IV puts
restrictions on the dynamic stability of the aircraft. For
the open loop system, the eigenvalues determined for both

cases gave a stable system for B less than -6 degrees. Since
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the controller loses the ability to use the rudder, the
control laws are altered. With the present controller, case
A is5 stable if it is assumed that the pilot can compensate
for the phugoid instability generated. For case B, not
taking into account the phugoid, the failure permitted with

the present controller is as follows:

Case B, @ degrees rudder failure: the aircraft is

stable except for -2.2 < g < -1.3 degrees.

Case B, -10 degrees rudder failure: the aircraft is

stable except for -2.7 < g < -0.9 degrees.

Case B, -20 deqrees rudder failure: the aircraft is

stable for -6.0 < B8 < -3.3 degrees.

Case B, -25 degrees rudder failure: the aircraft is

stable for -6.0 < B < -4.9 degrees.

In Chapter IV, the concept of controllability was
presented. For each trim condition, the open loop plant and
input matrices were evaluated for controllability. All were
controllable with the available input. Therefore, it would
be possible to redesign the controller in order to prevent
the instability of the closed loop system. One of the
important factors would rest in the control power still

remaining at specific trim condition.




Summary

For both cases, the phugoid introduced instability.
Since the frequency of the phugoid is low, it was assumed
that the pilot would be able to compensate. For case A, the
trim regions for both rudder failure types were dynamically
stable. For case B, specific trim areas within each rudder
failure types are to be avoided. This was determined using
the modified controller presented in figure 4-1 and 4-3.
Reconfiguration of the control laws could be done to
increase the trim envelope. The only limiting factor would
be the control power still remaining after the aircraft is
trimmed.

This analysis presented an appreciation of the
different types of motion that might be encountered when the
aircraft needs to be trimmed at different sideslip angles

due to a rudder failure.
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VI. CONCLUSIONS AND RECOMMANDATIONS

In Chapter I, it was stated that this research would

investigate the dynamic stability characteristics of an
aircraft which has sustained failure of a primary control
surface. This analysis was done by using existing data to
determine specific trim conditions and to evaluate the cross
coupling derivatives to be included in a linearized aircraft
model. A modified controller was then added to the aircraft
model to evaluate the closed loop response of the systenmn.
Using the results of the closed loop dynamic
characteristics, the trim regions were modified to represent
the damaged aircraft. The following paragraphs provide a
summary of the observations and conclusions of this

research.

Trim Area

Equi? J.rium analyses was performed for two specific
control implementations. The first used the actual control
surface actuation scheme of the basic F-16 aircraft. The
second permitted the horizontal tail aileron to deploy
independently from the flaperon. The first case only allowed
trim of the aircraft for a rudder failure between @ and -10
degrees. The second case allowed trimming the aircraft for

the worst case rudder failure analyzed (-25 degrees).

6-1




Plant Model

When the equilibrium areas were determined, they were
used as input to the linearized equations of motion of the
aircraft. The model included only cross coupled static
stability derivatives. The aircraft plant matrices were
produced. The eigenvalues of the plant were determined to
evaluate the dynamic stability of the system for each trim
condition. It was observed that the plant matrices were all
dynamically stable for B less than -6 degrees at the given
trim conditions. It was also noted that for all trim
conditions, the system was controllable. Therefore, it is
possible to improve the aircraft response even if it has

sustained damage to its rudder.

Closed Loop System

The controller developed for the closed loop system
took into consideration the damaged rudder. It was
interesting to note that the controller was the limiting
factor in this analysis since the closed loop system was
dynamically unstable for some trim regions and rudder
failures. The results also showed the coupling that took
place when trimmed in an unsymmetrical orientation. As B8
decreases, the roll angle, ®, decreases which introduces

strong coupling between the lateral and longitudinal motion.

This was observed by analyzing the eigenvalues of the closed
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loop system. Satisfactory ailrcraft dynamic response would
require restructuring the control laws since the present

controller limits the aircraft.

Recommendation

During the course of this thesis, several areas of
interest emerged which would provide better understaading of
the problem of a control surface failure. They are:

1. Tne same analysis could be performed without using

cross coupling stability deirivatives. This would

provide a baseline to evaluate their effect on the
aircraft motion.

2. The inclusion of the cross coupling dynamic

stability derivatives into the model would represent

the plant more accurately.

3. Development of a new controller would also permit

the aircraft to sustain damage to a primary control

surface by using greater independence of each control.

4. Only rectilinear flight was analyzed in this

research. Other flight conditions could also be

analyzed to determine if there are preferred

trajectories that could expand the trim envelope.

The first recommendation could easily be performed by
removing the cross coupling stability derivatives from the

actual plant model. This would permit the evaluation of the
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impact of the different derivatives on the model.

The second recommendation would require the
availability cf the dynamic cross coupling derivatives., Pu:
the trim conditions evaluated in this thesis, it would be
interesting to see 1f those cross coupling derivatives have
a noticeable effect on the observed motion.

The third recommendation would imply the redesign of
the aircraft control laws around the cases investigated,
which is a major task since several trim condition were
analyzed.

In the last recommendation, combinations of aircraft
trajectories could also be evaluated together in order to

achieve quasi-rectilinear flight.




APPENDIX A

F-16 Layout, Sign Conventions, and Axis Definitions

Figure A-1 shows a diagram of the general three-view
layout of the F-16. Figure A-2 defines the aircraft axis
systems, and the angles used to differentiate between them.
Control surface deflection conventions are also shown since
definitions for positive deflection are not universal. A
graphical representation of the different axis system is

also given.
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APPENDIX B

STATIC ATRCRAFT STABILITY DERIVATIVES

Included in this appendix are the functionnal forms of
the F-16 static stability derivatives found by Zaiser [5].
The derivatives are used in the trim analysis and in the
state-space model of the aircraft. Each set contain the
following information:

1. The control surface, i.e. zero, left leading edge

flap, etc.

2. The force or moment.

3. The correlation between the experimental data and

its functional form.

4. The number of terms in the polynomial.
The columns of the data file contain the following
information:

1. Number of the polynomial term

2. Power on the a term

3. Power on the B term

4. Power on the 6 term

5. The coefficient associated with that term
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APPENDIX C

Equilibrium Area Fortran Code Flow Chart

This Appendix contained the Flow Chart describing the
Fortran code used to perform the investigation of the
equilibrium area for case A and B. The Flow Chart is seen on

Figures C-1 and C-2.
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APPENDIX D

Linearized Equations of Motion

Introduction

In order to gain some insight into the nature of the

dynamic stability characteristic of the damaged aircraft, it
is necessary to derive the equations that governed the
aircraft motion about some nominal condition. This Appendix
will take the general equations of motion that are developed
by McRuer [6:203-232], linearized them for a rectilinear
flight condition, and expands the force and moment terms to
include the effect of coupling that are generated by a non
zero sideslip angle (g), and bank angle (®). The axis
systems used in this appendix are the aircraft body axis
system, and the stability axis system. A graphical
representation of both axis system is shown in Figure A-2

of Appendix A.

Equations of motion

If the airframe is assumed to be a rigid body, the
earth to be fixed in space, and the mass and mass
distribution of the aircraft constant, the'equations of
motion, for an aircraft, in the body axis system are given

by equation D-1. The kinematic equations that describe the

aircraft attitude are given in egquation D-2. All force terms

D-1




in equation D-1 incorporate the aerodynamic and the thrust
forces. Assuming that the aircraft XZ plane is a plane of
symmetry (IXY and IYz equal zero) , equation D-1 can be

simplified. The results is shown in equation D-3.

X

m[ O+ QW-RV 4+ g siné ]
Y

m[ V+R U- PW- gcosé sind ]
Z=m[ W+ PV-QU-gcosd cosd ]

L =P Iy+ QR (Ix-Iy) -(PQ+ R) Ixz
+(PR-0) Ixy-(02-R?) Iy (D-1)
M=QIY+PR(Ix—Iz)—(QR+P)IXY

+(PQ-R) Iyz-(R%-P?) Iy

N=RIz;+PQ(Iy-Ig)-(PR+Q) Iy
+( QR-P) Ixz-( P2-0Q%) Iyy

$ =P + 0 tané sin® + R tané cosd
6 = Q cos® - Rsind (D-2)
cosd sind
= R il
v (cose)+o( cose)

=m[ U+ Q W-RVa+ gsing ]

X

Y=m|[ V4RU - P W- g cosé sind ]
Z=m[| FR+PV-QU- gcose cosd]
L

=PIy+ QR (Iyx-Iy)-(PQ+R)Iygy (D-3)

M=Q0I,+PR(Iy-Iz)-(R2-P%) Iy
v

=RIz+ PQ({Ip-Iy) +(QR-2r) Iy,




Linearized Equations of motion

Since equations D-2 and D-3 contain products of
dependent variables, they need tc be reduce to trackable

form where the total motion can be represented by an average

motion (trim conditicn symbolized by the subscript o)

representative of the operating condition, and a dynamic
motion that account for small perturbations about the mean
motion (symbolized by small letter). For a rectilinear
flight, the average motion of the aircraft about it center
of gravity will be zero as well as all acceleration terms.
Assuming small perturbations about the trim condition, the
linearized equations of motion can be written in the

aircraft body axis system as

dX =m ( 0 + WHpg - Vg I+ g (cosfg) 6 )
dY =m ( v + Upr - Wy P - g cos@g cosdp?d

+ g (sinég sindg) 6 )
dZ =m ( w+ Vogp -Upg g+ g (cosfg sindy) ¢

+ g (sinBg cosdg) 6 ) (D-4)
dL = p Iy - ¢ Igxy
dM = ¢ Iy
dN =t Ig-p Iyxz

D-3




and the linearized kinematic equations as

¢ = p + g tanfg sindg + r tanfy cosdy
6 = g cos®g - r singy
(D-5)
cosd sinéd
‘ = _0 + _._9.
COSB@ coségp

Assuming that the thrust vector is in line with the X body
axis and balance all other trimmed forces, its contribution
to the perturbed motion can be neglected [6:267]. Therefore,
the dX, dY, dZ, dL, dM, dN are only perturbed aerodynamic
forces that contribute to the dynamic of the aircraft. Using
small angle approximation, it is possible to express v and w
in term of B and a respectively. The resulting equation is

shown below as

(D-6)




Substituting equation D-6 into D-4 and rearranging such
that the time derivative terms are on the left hand side of
each equations will,lead to

U=Li:-weq+ Vo r - g (coséyp) 6]
4
B = 21 S Y Yy aWpp
| ( Up® + Wo® ) m

+ g (cos@p cosdp) ® - g (sinfg sindy) 6 ]

(1 dz
d =] — —_ =V, U,
U@] m e P+l 9
\
- g (cosBgp sindp ) & - g (sinég cosdy) 9]
I I
p =dL 2 + dN Xz
Ig Iz - Ixf Ix Iz - Ixf (D-7)
dM
q-I—y'
I I
£ = dL X+ an X ]
Ix Iz - IxZ Ix Iz - Ixzz)
¢ =p +g (.anfy sindy) + r (tanbgy cosdy)
6 = g cosdp - r sinéy

sinég cos®p
¢=q__.+r____
cose0 coséyp

The terms that need to be determined are the aerodynamic

force and moment that are included in equation D-7.

Aerodynamic Forces and Moments

The representation of the aerodynamic forces and
moments is usually made in the stability axis system

D-5




(subscript s). The aerodynamic forces

the aircraft in the stability axis system are

Since the equation of motions are written in the body
system, the aerodynamic forces and moments need to be
transformed into that axis system.

that puts the aerodynamic forces and moments into the

axis system 1is

~Drag(D) =- L pVv2¥scp

Nl

Sideforce(Y)

-—; P v2 SCy
~Lift(L) = - .;_ pViscy
RollingMoment =.% P v s Ci
PitchingMoment =.% p v s Cnm

YawingMoment = 1 P Vv s Cn

rol

cosa @ sinc
[BS]: Q 1 Q
-sina @ cosa

The transformation

and moments acting on

(D-8)

axis

matrix

body

(D-9)




Transforming the aerodynamic forces and moments in the body

axis system will result in

X = Xg cosa - Zgsina
=‘_§ P V2 S)(-—CDcosa + € sina)

Y=YS

1
pV25C'Y

N

Z = Xg sina + Zgcosa

.—.(_;. P ve S)(-—CDsina —C’Lcosa)
L =Lgcosa - Ngsina
=(_; p st)(clcosa- Cp sina )

M= Mg

1

3pV25C'm

N = Lg sina + Ngcosa

=(%pvzs)(clsina+cncosa)

Equation D-10 can be expanded to determine its

(D-10)

dependence with the perturbed motion. The expansion is done

using a Tailor series expansion at a given trim condition.




The expansion is represented by

F=PFy+ aFIA + oF
AN T A

)|
J (D-11)
oM aM oM
M =M
o + (m]l@ll + (m)l@lz + + [m]'@ln

where F represent the forces, M the moments, A the dependent
variables, and A the perturbation from the trim condition.

The dependent variables in this case are

A=u,v,w,v,wp,q,rbé (D~12)

where

o
\

= VYV CcosB cosa

V sing (D-13)

VcosB sina

The higher order term have been eliminated from the
expansion to keep the perturbed equations of motion linear.
Taking only the derivative terms in equation D-11, it is
possible to evaluate the dependence of each aerodynamic
forces and moments in the body axis system with respect to
the dependent variables. Since the aircraft can be trimmed
at some angle a, B, and ¢, decoupling of the linearized
equations of motion will not be possible.

Since the acceleration in the X body direction is in
general negligible, the term was omitted. Using equation

D-8




D-11 to expand equation D-10 for each dependent variables,
this will give the contribution of the forces and moments to
the perturbed motion. Expanding the X contribution in the

body axis system for the dependent variable u will give

%f:xl,:-%.'icosa-ui‘%%ﬁ
v 4 (D-14)
oL _. dsina
«r..éE sina + L 30

where the derivative of each components of equation D-14 are

i i sina
dsina _ gsina da _ _ Logq
du da Jdu

dcosa _ gcosa QJa _ sin‘a

du da Ju

1 ave 1 2 gv 9Cp 1 _2 8Cp ja
P2V wmaw 7Y a3 G
1‘,230033
Y3 T;s“si]

..-.:pS

ELE (D-15)

Vo

aCp
2 CpcosBg cosag + Vg 57V cosBg cosag

dCp sinag 9Cp sinpg cosBp cosagy
Vo - ¥

da U +p? ? o8 JUo® + Wo®

oL gs ocr

= = =— 12 (C1 cosBp cosap + Vg — cOS cosa

Ju Vo [ L Bo %) ° 37 Bo 0
0Cyr singp v dC1, sinpg cosBy cosayp

- Vo ——— " e
o JU@ +Wp 9p Ug® + wy

and g =.% P V@Z




Combining all the terms will result in

gs

sin cosB
Xy= == {( -2 C'D—C'DU)COSﬁ@+V@ Po 2 2
Vo

C% cos“ag
JU@ +Wo
Vo

- — (( C - CDu ) + singBg cosﬁ@CLﬂ)
Up® + Wy

+ (-2 cp-cp) cospe) sinag cosag

V,
+—L_(-C'Iﬁ—CD)Sin2a@
U™ + Wy

(D-16)

In equation D-16, the dimensional derivative, Xy is
expressed in terms of the nondimensional stability
derivatives. The definition of each nondimensional stability
derivatives is well documented in McRuer [6:292-293].Also,
the addition of the cross coupling stability derivative
terms that can easily be related to the both longitudinal
and lateral derivatives for definition. The only difference
with McRuer development is the Cjy derivative which is
define as

ac 4

€ = Ve 5y

where i can represent lift, drag, side force, roll.ng
moment, pitching momeat, and yawing moment.

Similar derivation can be done for each forces with
respect to each dependent variables to determine the

D-~10




expression of each dimensional derivatives in terms of the
nondimensional stability derivatives . This will result in

the following equations

= Vp sinBp cos
yU=iﬁ [_( -2 Cy - Cyy ) - ° ° 'Becy cosag

v, i B
° Ub + "b
Vi
__° ¢
"U@ + Wp

sina@

(D-17)
G sinBg cos
Zu=i§ ( -2 CL-C'Lv)cosﬂe-o-V@ Po Fo C'Lp cos ag
° «Ub +”b
Vo
- (( C - CDa ) - sinBgp cosBg C'Dﬂ )
U@ 4-Wb
-(-2¢Cp-Cp) cosB@) sinag cosagy
V
- 2 ( Cp - Cp ) sinag
UQ + Wb
(D-18)
g S Vo coszﬁ@
Xy-= T ({ -2 Cp - CDU) sinBg - ~——0— C% cosag
° U + W
2
Vg cos“B -
-1t -2 C - CLU) sinBg - ,JZ_____il Clg sinag
U@ + Wb
(D-19)
D-11




5 S s S T Am A T A e

2
_gs _ _ _ } Vo cos“Bg
YV_T@ ( -2 Cy C'YU)SltlB@-!——..--...._C'yﬂ
Up® + Wy
{D-20)
g s Vo coszﬁg
Zy= =2~ II( -2 Cp- Cp, ) sinBg - ———— C sinag
V@ b {"_2 2 Dﬁ
U@ + W@
. Vo coszﬁg
+[( -2 C’L—C'Lu)SJ.DB@——_____C'Lﬂ cosag
«Ug + Wg:
{D-21)
g s Vo 2
Xy= = ( €L -Cp, )cos a@+(( -2 Cp - Cp, )cosBe
4] / 2 2
U@ + Wo
Vi Vo sin cos
-_____Q_____ ( - CIq - Cp) + ° Po Fo C'q Sinde cosag
JU@ + W@ "U@ + ”@
Vp sinBp cospB
+1 - (-2Cp -C'Iq )ycosBg ~ ° ° ° CLB sinza@
‘,U@ + W@
(D-22)
= Vp sinBy cos
Yw= _.‘7§ -( -2Cy- CYU JcosBg - ° ° Po CYﬁ Sinag
4 "U@ + Wp
Vo
+ | ——— Cy, [cosag
U@ + WO
(D-23)




= V,
g S 0 2
Zy= - - - -
W 7 ( C'Iﬁ Cp )cos®ag +(( 2 Cr, CIq )cosBe
‘/U@ + W@
v, Vo sinBgp cosp
*——Q——(CL‘CDG ) + ° ° GCLB Sinag cosagp
"U@ + W@ "U@ + W@
Vo sin cos
+|( =2 Cp _CDU )cosBg + ° Fo Po Cq sinza@
"U@ + WQ
(D-24)
gS b COSzﬁ@
Xy = 2= (— CDg cosag + Cl‘ﬂ sinag ) (D-25)
° 1/%2 + W2
gSb cos?gg (D-26
Yp = T cyﬂ )
Up“ + Wo
2
= cos
Zy = R Fo (— Cp, sinag - Cr, cosag ) (D-27)
V0 | i+ mt 4 b
0~ + Wo
q s c 2 .
Xp= g ( - CDd cos“ag + CI« Cosag Sinag )

2 V
4 ‘/U@ + W@

sinBg cosBg b

‘,UO + W@

(CDﬂ sinag cosagp - CL; sinza@ )

(D-28)

G S 1

Yg= 3

=2 | T rm—a
U@ + Wy

( ¢ Cy, cosag - b singg cospy Cyﬂ sina@) ]

(D-29)

(=]
1

13




ZW=

c

g S
2

V P, —
0 U@ +WQ

sinBg cosBg b

— ['C'Dp cosag + C'L‘J snwe]

- "\ -C sin - C cos
[ -Cp, sineo - €z, cosap ]

‘}U@ + W@

=-C i
[ D, cosag + CLq s:ma@]

[ "CDq sinag - CLq cosaQ]

Cyp

[ _CDI' cosag + CLr sina@]

14

(CLﬂ Sinag cosagp - CD; sinzae )

- Clﬁ COSZCXQ - CDd sinag cosag )

(D-30)

(D-31)

(D-32)

(D-33)

(D-34)

(D-35)

(D-36)

(D-37)




’- - -

Yp= %‘% Cy, (D-38)

l Zp= ?zsvb [—C’Dr sinag - Cr, cosae] (D-39)
0

1
i

Xs; = 9 S( - CQ;‘ cosag + C'I” sina@) (D-40)
i

Yo =9 5 Cy, (D-41)
i
I Zs; = 9 S( - CD“ sinag - CLsi cosa@) (D-42)

Expanding the moments contribution with respect to each

dependent variables will lead to

= sinBgp cosp
Ly-= gSVb ( 2Cl+Cln)cos/3@-V@ ° @Clﬁ cosza@
° Uo +W0
Ve ;
e ——— (( Cp - Cn, ) + sinBy cosBy C',y )
U@ + ”0

+(-2¢p- Crp ) cosﬁo) sinag cosagy

v, .
-_J_(-C%—Cl)sinza@

" U@ + W@

(D-43)




g Vp sinBg cosp
My = ‘;SV"' (2Cp+Cpy) - — 2 °c,,’ cosag
@ "UQ + Wy
V
2 __ Cmy sinag
U@ + "@
(D-44)
— singp cosp
Ny = ‘;’SV" (2Cp+Cp ) cospg - Vo 2 ? cpy |cos?ag
o UQ +"e
Vi
-|—2— ((-c1-cp ) - sing cospg Cyy)
Up“ + WQZ
-(-2C1 - Cll] ) cosB@) Sinag cosagp
Vi
¢ 2 (Cp-Cp ) sina
"U@ + WQ
(D-45)
g Sb . Vo cos?Bo
Ly= 5V (2C1«+C'1U)51n;S!0—______C'1‘B cosagp
4 "U@ + Wp
(C-46)
2
Vg cos“p
+{( -2 Cp - C"U ) sinBg ~ __0;_0 Cnﬂ sinag
"U@ + ”o
g Sc Vo cos®ge
My= S=— (2 Cn+ Cny ) sinfe + ———= Cn (D-47)
° Ug” + Wy
D-16




) S E» A BN =R

Ly

2
G Vp cos
qub (2C.'1-4>C'_ZU)S:i.nﬁ@—_____0 Po Clﬂ sinap
«U@ 4-Wb2
(D-48)
Vo coszﬁ@
«Ub24-ﬂb:
ash ~ Vo c, -C 2 c,;-C
v ( n—k)cosa@-(( -2 €1 - €1, JcosBe
° Up“® +« Wy
Vi Vo sinBgp coss
° ( _cnu_cl) + ° ° ‘_oClﬂ sinag cosap
Up®™ + Wy JU@Z + h’az
Vg sin cos
s[€ -2 cp -cpy ) cospg + 2 Bo coshe Cry sinZag
Uo + WQ
(D-49)
et Vo sin cospB
g5c (2Cm+C,m)cong- ° Ao QC,,; sinag
Ve Ju Z W2
e * "o
V,
+ .._______Q Cma cosap
«Ub2+ sz
(D-50)
- b2 coszﬁ@
(Cl cosag - Cp, Sinag ) (D-52)
2 Vo U § ny
yUo™ + Wo
= cos?p
gS bec 0 (D-53)
2

D-17




Ny =

Ny

Hw=

gSh - Vo 2
‘/Ue + WQ
V, Vo sinBgp cospB
2 ( Cp - €1, ) + ¢ ° ° Cnﬁ sinag cosag

"U@ + Wo 1,U0 + Wy

Vo sinBp cosp
- (-2C1-C1”)cosﬁe+ ° 2 Oclﬁ sinza@
1“/0 + Wo
(D-51)
= 2 cos?
. a5 b Bo (Clﬂ sinag « Cnﬁ cosag ) (D-54)

>V
° ‘/UQ,Z + Hy?

2 \
Ci1 cos“ap - Cp, COSap Sin
z Vg, ( L o y o ae)
Uo + WQ

sinBg cosBp b

‘,U@ + W

(D-55)

‘ - Clﬂ sinag cosap + C"ﬂ sinzae )

( ¢ Cpy COSag - b sinBg cospBg C,,,H sinap )

gsSc 1
2 Vi
° Juez P

(D-56)
gsvb ¢ ( Cny coszae + C sinag cosag )
@ 1JUp® + Wy
sinByp cospfp b )
- ° i (Cnﬂ sinag cosag - C'lﬂ sinzae )
‘/UQZ + "02
(D-57)




My TN ABE e ay &

gSchbh .
Lg-= _q_z_va_ [ Clq cCosag - qu sinag ]

gSchb ,
N C7 sina Ch, cosa
9° 7 | 4 @+ "ng o]
- 2
g Sb ,
L,= 2 _~__—_ C cosap -~ C sina
g Sbc
M, = C
P 2 Vg B
N, = ___-q s bz Cy sinap + €, coOsa
G 5 b c c s
L,-= S [ 1, cosag - Cp_sinag ]
G Sbc
M= 2 _ _ ~ C
r 7 Vg my

(D-58)

(D-59)

(D-60)

(D-61)

(D-62)

(D-63)

(D-64)

(D-65)




I EE Sy Tam .- G

= 2
_asb .
Np= T [Clrs1na@-;cnrcosa@]
(D-66)
Lg; =9 S b ( Cl‘i cosag - le_ s:.nae)
(D-67)
Mg, =3 5C C%i
(D-68)
Ns; =q5bh ( C1°i Sinag + C"‘i cosag)
(D-69)

Using equations D-16 to D-69, it is possible to
determine the contribution of the total perturbed force and

moment which is

dX=Xyu+Xyv+Xyw+ XpV + Xpw
+pr+qu+er+X61. 64

(D-70)
dY=Yyu+Yyv+Y¥yws+ Ypv +Yow
+Ypp+qu+ Yrr+Y6i 65

- (D-71)

It is now possible to replace equations D-70 to D-75

D-20




dZ=2pu+Zyv +2Zyw+ Zyv + ZpwW
+pr+qu+ er+zbi X

(D-72)
dL=Lypu+Lyv +Lyws+ Lov + Lpw
+Lpp+qu+er+L61. 64

(D-73)
dM=Mypu+Myv +Myw+ Mpv + Mpw
+Mpp+qu+Mrr+M61. 64

(D-74)
dN:NUu+NVV+NWW+NVV+NWW
+Npp+qu+Nrr+N61. 64

(D-75)

into D-7 to get the total motion of the aircraft about a

trim condition which can be represented by

X=Ax+Bu

(D-76)

where

z:[uaﬁpqréet]T

=[61 62 . e én]T

I

(D-77)

and &, represent specific control surfaces that can be

controlled by the pilot.




Summary

In this Appendix, the linearized equations of motion
for an aircraft were derived. They were used in the
computer code of Appendix E to get the F-16 plant and
control variables matrices to evaluate the dynamic stability

of the aircraft.




APPENDIX E

State Space Derivation Fortran Code

This appendix describes the computer code used to
convert the stability derivatives for an aircraft at a
specific trim condition into a state space representation of

the fornm

X=AX+BuU (BE-1)

where A is the plant matrix, B is the control matrix, x 1is
the state, and u the control. Aircraft-specific data need to
be entered into the program as well as its stability
derivatives. Cross-coupling dynamic stability can be entered
into the code. Figure E-1 is a symplified flow chart
representation of the code.

If more than one trim condition is input into the
program, the output for the A matrices is a file where each
matrix occupied a 10x9 space. Each 10x9 space is subdivided
as follows:

a. the first line describe the aircraft attitude (B8, «a,

$, 8, zeros)

b. the remaining 9x9 space represents the plant matrix

The output for the B matrix occupied a 10x2 space. The
first line contains B8 and «, and the remaining 9x2 space is

the control variables matrix B.




Input flight condition

[nput Stability Derivatives

( from Appendix C)

1N
Linearized Stability derivatives
for Given Flight Condition
|
Input Dynamic Stability
Derivatives

Calculate Nondmensional
Derivatives in Body Axis

|

Sum Nondimensional Derivatives

Form the A Matrix
Form the B Matrix

U

Output A & B Matrices

Figure E-1 State Space Derivation Fortran Code Flow Chart

E-2




APPENDIX T

CLOSED LOOP SYSTEM EXAMPLE

This Appendix contains an example of the derivation of

the closed loop system eigenvalues for case B.

The aircraft states are:

x=[U¢BPqI¢6¢6hH 6m']r

U= arcff (F-1)
[ nd

The open loop state space matrices are represented by

&
i

AX+Bu (F-2)

Xx=CX+Du

where A is the plant matrix, B the control input matrix, and
C and D are the measurement matrices associated with each state or
control. Matrices A and B were developed using the linearized equations of
motion of Appendix D and the computer code developed of Appendix E.
Matrices C and D were determined using equation 4-6 to 4-8c. The matrices

are presented on the following page.




A =

Columns I through ¢

-1.3100e-903
-5.780Q0e-20%
~2.4000e-0206
-1.0000e-203
1.9300e-903
3.3100e-004
Qe

9

()

Q

Q

1.7500e+001
-8.1600e-001
~1.4700e-003
2.9500e+0200
-2.1600e+Q0Q1
~3.150@e-0201

OO0 OS

Columns 7 through 11

-4.3600e-0205
6.9700e-004
4.8000e-202

o

-B8.6400e-005
"]

Q

()

[}

]

")

B =

"] "]

] -]

] "]

("] ")

Q "]

"] Q

] ]

") Q

Q )
20 ]
[~ 29

C =

-3.21020e+001
~2.6200e-Q03
3.7900e-005
Q
3.250%e-004

R

Columns 1 through 6

]
Qo
Q
1.9748e-003

1.0020e+000
")
"]

6.7476e+000 -2.4095e+00

Columns 7 through 11

nNeoe

-1.3783e-00

[SN--N--N. -]

5.1808e-20

.9928e+201
. 9000e-001
.130Qe-001
.7000e+001
.6500e+000
.4800e+001

?

o066

00000 E®®

2 -

NN

F-~2

-8.65006-9904 -3.6200e+001 -9.
1.3800e-002 9.9800e-901
5.4500e-002 @ -9

~1.4400e+0200 e 2

~1.7100e-203 -5.5100e-001

~1.4100e-003 2 -4
1.0000e+000 "]

@ 1.0000e+000 1

Q@ -1.4500e-002

"] "]

] "]
-1.9800e-221 -7.2900e+0@0
-3.5700e-003 B8.8700e-204
~2.03@Qe-203 3.,930Q0e-204

1.2100e+000 -4.1800e-002

-2.89002-201 4.7100e-002
5.1700e-001 -4.4200e-002

"] "]

"] )

Q Qe
-2.0000e+001 "]

Q@ -2.0000e+001

]
Q
]
]

[}
1.02000e+9200
Qe
-2.7288e-00Q1

NOOS

-5.4622e-00

?

]
1.0000e+000
-1.9893e-001

WwWees

2.8838e-00

2300e+000
o

.960%e~001
. 1800e-02021

Qo

. 7300e-001

Q

.4500e-002

Q9
(4
9

©CO0es




The state space system that represents the feedback
paths (Figure 4-4) is written in the same form as equation
F-2 with the matrices Ay, By, Cg, Dg. The original systenm
had several states that could be removed. The results are:

A =

~7.3497e+4000 4.7151e+0Q00 -2.1075e+000 -2.9966e+30Q
3.8161e+008 -3.6699e+000 -1.0872e+0¢@ 8.1433e-001
-7.6241e-016 7.0566€¢-001 -~1.2343e+001 -5.1952e+00Q
1.3395e-016 -1.1561e-016 2.6901e+000 1.1121e+20@0

B, =
3.9575e-002 4.6053e-0Q2 Q@ 6.9851e-003
~3.0824e-003 -3.1984e-002 9 -8.6013e-003
7.0122e-002 -2.0804e-002 @ 2.5616e-002
-9.4972e-0203 5.0364e-203 Q -4.4444e-0203

Ck -
-1.2270e¢-014 1.0676e-014 -1,9959e-014 -8.3393e+0@2
1] ] Q Qe

Dk -
~3.1680e+2@0 [} 9 -1.0589e+009@
[} 0 -1.2000e-001 9

Assuming that no inputs are feed forward , both systems
can be combined together using equations 4-15 and 4-16 , to
form the closed loop model of the aircraft.‘The results are
shown on the following pages using the representation of

equation F~2 with the matrices Acrr Bepe CCL, Dep, to

represent the close loop systen.
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A, =

Columns 1 through 6

-1.
-5.
-2.
-1.
1.
3.

4.

1.
-1.
5.
-8.

3100e-003
780Qe-205
4000e-0206
2000e-203
9300e-003
3100e-204
Q
]
]
1824e-9202
Q

2017e-005
6986e-005
9587e-805
7767e-006

1.75@8%e+001
-8.1600e-001
-1.4700e-203
2.9500e+000
-2.1600e+001
-3.1500e-201
]

[}

[
2.0627e+002
Q
7.1635e-002
-6.1120e-002
2.4297e-001
-3.9486e-002

Columns 7 through 12

~2.

~8.
1.
~3.
6.

.3600e-005
.9700e-204
.8000e-002

]
.6400e-005

Qo
[
]
Q
9190e-001
Qe
3869e-005
1855e-004
5306e-004
1255e-005

-3.21020e+001
-2.6200e-003
3.7900e-005
o
3.2500e-004
]

]

]

9
1.0972e+209
(]
3.1526e-004
-4.4562e-004
1.3271e-003
-2.3026e-004

Coluans 13 through 15§

-3.

~1.

00O HOSO8 S

.1352e-213

Q

.7151e+200@

6699¢+000

.9566e-001

1561e-916

0006 ee

3.9918e-013
[}
~2.1075e+000
-1.0872e+0200
~1.2343e+001
2.6901e+000

-1.

-6.

-2.

-5.

.Q9900e+201 -8.6500e-0204
.9000e-001 1.3800e-002
.1300e-001 5.4500e-002
. 7000e+001 -1.4400e+000
.6500€+000 -1.7100e-003
.4800e+291 -1.4100e-203
@ 1.0000e+000
Q ]
Q "]
.1031e+001 -5.7794e+000
Qo ]
4662e-902 4.4392e-002
.0725e-002 -2.9636e~-002
1722e-002 -~2,7794e-002
.0799€-202 6.2492e-003
Q -1.9800e-001
@ -3.5700e-203
@ -2.0300e-903
@ 1.2100e+000
@ -2.8900e-001
Q@ 5.1700e-001
] Qo
"] Qe
"] ]
9 -2.1157e+0@01
Qe ]
9 -3,3238e-004
@ 4.6982e-004
9 ~1.3992e-203
@ 2.4276e-004
]
-]
")
"]
-]
]
e
"]
]
.66796+0204
(]
9966e+090
.1433e-001
1952e+200
.1121e+009
F-4

~3.6200e+0201
9.9800e-201
[}

"]
-5.5100e-201
)

]
1.0000e+000
-1.4500e-002
~4.2131e+000
2.4000e+000
-1.2105e-003
1.711Qe-003
-5.0958e-003
8.8411e-004

=7.2900e+200
8.8700e-004
3.9300e-004
-4.1800e-002
4.710Qe-002
-4.4200e-002
[

[]

]
6.1076e-002
-2.0000e+001
1.7548e-005
~2.4804e-005
7.3872e-005
~1.2817e-005

-9.2300e+000
]

-9.9600e-201
2.1800e-001
]
-4.7300e-001
]
1.4500e-002

0006966

90O S

2.4539e-013
]

-7.3497e+000
3.8161e+000
-7.6241e-016
1.3395e¢-216




ch. =
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) e
o ]
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] °
e o
] 0
) )
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20 9
] 20
e °
0 9
o ?
) )

Co =

Columans 1 through 6

@ 1.0000e+000
] ]
(] Qo
1.9748e-0Q3 6.7476e+200

Columns 7 through 12

NSO O
NOOS

-1.3783e-00 5.1808e-00

Columns i3 through 15

° o
0 °
° @
° °
D, =
) P
° °
° °
° °

Qo
]
]
-2.4095e+000

NN N

1.0000e+020

-2.7288e-00

-5.4622e-00

]
]
[
1

NeOS

1,2000e+00
-1.9893e-00

2.8838e-00

]
e
Q
1

weos

o088

0O e6




are:

The eigenvalues,

o

.6025e-001+
.6025e~-001-
.7151e-001+
.7151e-001-
.3977e+000
.2807e-003+
.2807e-003-
.8505e-002
.0000e+001
.09000e+001

The eigenvalues of the

And the transmission zeros of the close loop system are

Q

.2781e+001

.0001e+9001

.1034e+001+
.1034e+001-~
.5100e-001+
.5100e-001-
.4483e-001+
.4483e-001-
.5788e-001+
.5788e-001-~
.2502e-003+
.2502e~-003~
.5586e-003

.4456e~001

or poles,

[ - -

N

closed loop system are given by

oo &0

.7020e+0001
.7020e+0001
.0162e+0001
.2162e+0001i

.4055e-0021i
.4055e-0021

.9130e-0011
.9130e-0011i
.6972e+0001
.6972e+0001i
.1989%e+0001
.1989e+0001
.1864e~0011
.1864e-0011
.9495e~0021
.9495e-002i

.1250e+001- 5.1020e-0161
.0000e+001+ 1.0214e-0161
.0000e+000
.5158e-008
.1738e-017

F-6

of the open loop plant
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